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Abstract.

We employ the concept of an approximate pseudo-inverse (API) of a singular linear operator
A to construct algorithms that yield the Moore-Penrose pseudo-inverse solution z+ = Aty
to the singular system Ax = y. Such an algorithm is a nonmatrix representation of the
Moore-Penrose pseudo-inverse A* of A. We are particularly interested in fast algorithms
[executable in O(n) operations] that are fully efficient on parallel computers. One result
presented concerns the construction of APIs for consistent problems and is applied to the
two-dimensional free-boundary spline interpolation problem. For this problem, the conju-
gate gradient algorithm, preconditioned with an API, proves to be very effective. The
V-cycle multigrid algorithm FAPIN is shown to be an API if the smoother satisfir: a certain
condition and proves to be very effective for Poisson’s problem on a two-torus. We have
demonstrated our algorithms for n close to one million on the iPSC hypercube at Christian
Michelsen Insiitute, Bergen.

1. Introduction
If the large sparse linear operator A: X — Y is singular, then the lincar system
Az =y (1)

may have no solution, which is the case when y ¢ R(A). In this situation, our task is often
to find a best approximate solution, or a least squares fit to the data y, which is any z such
that || y — Az|| is minimized. When X and Y are finite dimensional Hilbert spaces, our
primary concern in numerical computation, not only do such best apnroximate solutions
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z always exist, but there is a unique best approximate solution of minimum norm. This
we denote z* and refer to as the Moore-Penrose solution of equation (1). The operator
AY .Y — X :y+~ z* turns out to be linear and is called the Moore-Penrose pseudo-inverse
of A. For more details sze Moore [14], Penrose [15], or Ben-Israel and Greville [1].

Our task is to derive fast parallel algorithms for A*, algorithms which will allow us
to evaluate z* = A%y as efficiently as possible on a parallel computer. Our approach
is to define an approximate pseudc-inverse to A and show that these can sometimes be
constructed efficiently on a parallel computer. When they can, they provide an effective
construction of the exact Moore-Penrose pseudo-inverse A*.

Definition 1. The linear operator Z:Y — X is an e-approximate pseudo-inverse (e-API)
of the linear operator A: X — Y if e€<1 and

|(Z-ZAZ)| <e||2v]| Vvel, N(Z) L R(A), and R(Z) L N(A). (2)

Using the concept of an ¢-API, we can state a simple defect correction (DC) algorithm for
the solution of (1) as the following:

lalgorithm API-DC

m=y-— Az", z"t'=2z"+ 2"

Theorem 1. If Z is an e— approximate pseudo-inverse of A, then algorithm API-DC
converges at the geometric raie ¢, for any initial approximation z°, to an x such that
|| y— Az|| is minimized. If 2° == (), then x is the Moore-Penrose pseudo-inverse solution
zt = Aty.

A detailed proof may be fourd in Frederickson and Benson [9]. For a fuller discussion
of the iterative solution of singular systems, see Ben-Israel and Greville (1] and Keller [12].
Our primary interest in this puper is to show thai there are highly parallel algorithms
which implement the concept o' an API and therefore, through Theorem 1, provide a fast
representation of A*. In the rext section, we show that the orthogonality condition in
X is handled easily for consis ent system: I Section :}, we show that a preconditioned
conjugate gradient algorithm can be an ¢!luctive represeatation of A* if an API is uscd
as a preconditioner. Phrased another wiu,. CG-accelerat on of the API-DC algorithm is
possible under certain condit’ons. We demunstrate this or a rather large singular problem,
one of dimension 500,000 ani with a null space of dimenz »n 3000, on an iPSC hypercube.
For details see Section 5. In Section 4, we show that the multigrid algorithm FAPIN
(fast approximate pseudo-inverse) can provide an effective representation of an APl on a
hypercube.

2. Construction of AP's in the Cons' teat Case

Consistent, but underdet ermined, linear sy «tcms are particularly easy to handle because we
are able to concentrate or the inequality in the definition of AP! and ignore the orthogonality
conditions.



Theorem 2. If the linear operator A : X — VY is onto, that is R(A) = Y, and the linear
operator B: Y -+ X satisfies the inequality

|| z— BAz||< (V1+e-1)|z]| Vz.l N(A) (3)
for some ¢ < 1, then Z = A*B*B is an ¢ - API of A.

L

Proof: R(Z) 1 N(A) follows from the fact that R(Z) = R(~ ,. For any z L N(A)

| (I - A*B*BA)z|| =|| (I - I = (I - A*B*))(I - (« - BA)))<]|

< - A*B*)z||+ || (- BA)z || + || (I - A*B*)(I - BA)z|| < ¢ || =]|.

Since R(A) =Y, N(Z) c R(A). Thusif N(Z) # 0, we can find z € X such that ZAz = 0,
violeting the inequality. »

As demonstrated on the spline interpolation problem below, the above approach can
provide an effective solution method. For related results, see Bjorck and Elfving[4] or Elfving
(6], where a symmetric successive overrelaxation technique is used as a preconditioner for
the conjugate gradient method applied to AA*z = y.

3. Approximate Inverses

Suppose now that the linear spaces X and Y have bases {z*, i € I'} and {y’, j € J}, with
respect to which the linear operator A has a sparse matrix representation. In some cases,
we are able to construct an API that also has a sparse matrix representation, perhaps with
the same sparsity as A*. One way to do this generalizes the concept of an LSQ approximate
inverse (2,3] that has proven quite effective for nonsingular linear systems.

Definition 2. The LSQ approximate pseudo-inverse of A is the operator Z = Ilx Blly,
where Tlx projects onto N*(A), Iy projects onto R(A), and B minimizes the Frobenius
norm

| I— BA|F (4)

aubject to the constraint that B have the same graph (non-gzero structure) as A*.

For example, the |icubic spline interpolation operator on a two-torus is defined by the

9-point operat.
A= — 6 4 ) (%)
36 4 1

which is both sparse and diagonally dominant. An elementary calculation shows that

Ll e
Puad

/ 0.15641 -0.6603 0.1641
7 = LSQ(A)= | -06603 2830 - 06603 | . (6)
0.1541 0.6603 0.1541 )

Note that Z h.s the same cartesian product structure as A. iven in the variable coefficient
case, this construction is inexpensive and parallel because the variational equations that

conditions.



for some interesting problems (such as the Lapiacian on a two-torus, which we consider in
Section 4), the projections J1x and Iy are inexpensive. In other cases, the method suggested
by Theorem 2, which does not rely on the availability of efficient projection operators, is

more appropriate. This is what we use to precondition the conjugate gradient operator in
the next section.

4. API-CG: An API-Preconditioned Conjugate Gradient Algorithm

If the operator A: X — VY is nonsymmetric as well as singular, we can be sure that the
standard conjugate gradient algorithm will have difficulty. "he recent papers of Faber and
Manteuffel [7] and [8] contain a clear discussion of the limitations of the standard conjugate
gradient algorithm and the class of generalizations that they refer to as orthogonal error
methods. On the other hand, Kammerer and Nashed [i1] and Bjorck and Elfving [4] and
[6] have shown that the preconditioned conjugate gradient algorithm of Concus, Golub, and
O’Leary [5] may be used, under certain conditions, to solve singular linear systems. We will
see that when Z is an API of A with the additional property that ZA: X — X is symmetric,
the following preconditioned conjugate gradient algorithm converges.

algorithm API-CG

initiate : 10 =y— Az°
qO — ZrO
P’ =¢°

iterate : a' = (¢*,r')/(p", Ap*)
2 = 2 4 a;p’

g Ap

gt = it

b = (¢, r* ) /(g*, )
Pl = ¢t 4 bipt

r

i

We have obtained particularly good convergerce rates using the inner product (z,y) =
(z,A%y) in conjunction with an AP of the form Z = A*B* B. The evaluation of both inner

products required by the API-CG algorithm is easy in this situation. To understand this,
note that

(¢, r?) = (Zd', A*e?) = (r',B*BAAY+?) = (Br',BrY), (7)

with the last reduction using the fact that r’ ¢ R(A). Observing that p? ¢ R(Z) = R(A*),
we compute

(r', 4p") = (', 4% Ap") = (0',p), (8)
which is certainly easy to evaluate.



Theorem 8. If Z is an e~ approximate pseudo-inverse of A and ZA: X — Y is symmetric,
then the API-CG algorithm converges, for any y € ¥ and any z° € X, to an x such that
|| y — Az|| is minimised. The error at the n*" iterate satisfies the inequality

| 2~ ="l < 4(e/2)*" || 2° || . ()
If z° = 0, then the limit z is the Moore-Penrose pseudo-inverse solution z+ = A*y. Thus

the API-CG algorithm with £° = 0 is an effective representation of the Moore-Penrose
pseudo-inverse At of A.

For a proof we refer the reader to Reference [9).

5. The Fast Approximate Pseudo-Inverse FAPIN

If the linear operator A : X — VY is very poorly conditioned as well as singular, we
mnay expect it difficult to find an e-AFI that is powerful enough to make even the API-
CG algorithm converge as fast as we would like. We do, however, know how to deal with
discretizations of ellipt:c partial differential equations: the antithesis of their ill-conditioning
is the multigrid algorithm in one of its many variants. We describe one V-cycle of a multigrid
algorithm as an approximate inverse. If the smoothing is done properly, using an API of A,
and if a projection is inserted in the right place, the result is an approximate pseudo-inverse,
which we refer to as a fast approximate pseudo-inverse, or FAPIN. Choosing the correct
smoothing step is the key to building this algorithm.

Definition 3. The linear operators Z:Yx — X, are an c-nested approximate pseudo-
inverse (e-NAPI) of the linear operators Ax: Xy — Y if €¢<1 and

| (I— ZeA)u|® <@ [P+ [[w" P Yul N(Xi),
N(Z) L R(Ax), and R(Zx) L N(A),
where u = u' +u”, u'€ N(Ax_1), uv"LN(Ak-1).

algorithm FAPIN( k,ry )

if k>0, then
rie = s
re—1 = Pary
We—-1 — FAPIN(k - l,r,,_l)
wi = Qrwr-1
8p = T — A,.wk
Wi = Wi -+ Zx8i
else
w = Zyro
endi f
relurn w,




Theorem 4. If for some ¢ < 1 and all 0 < 5 < k, Z, is a nested approximate pseudo-
inverse of A;, then FAPIN(k, + ) is an e~-API of Ay, and may be used in either API-DC

or API-CG to provide an effective representation of the Moore-Penrose pseudo-inverse A*
of A.

The interested reader is referred to Reference [9] for » detailed proof.

5. Hypercube Computations

We study a free boundary spline interpolation problem in the plane. Consider a discrete
mesh with spacing h in the z and y directions and with n; and n, points in the x and y
directions, respectively. At each snterior point, a value for the function to be interpolated
is provided. Thus, applying the bicubic spline interpolation operator at these points yields
(nz — 2)(ny, — 2) equations in n.n, unknowns, a consistent system for any data because the
operator is of full rank.

We have implemented the ailgcrithms presented here on the 32-node iPSC hypercube
at Christian Michelsen Institute in Bergen, Norway. We used the high-level CMI library
as the basis for our computations and added an efficient procedure that evaluated any
of the operators A, A*, B, and B", using a 7 by 7 array of 3 by 3 arrays to store the
coefficients. The API-CG algorithm requires more communication cost than the API-DC
algorithm because of the inner products. As shown in Table I, this is more than offset by
the enhanced performance.

Table I. Computational Results for the Free-Boundary Spline Problem*

API-DC API-CG
N per(l) per(8) T(8)/N per(1) per(8) T(8)/N
on 0.332 0.271e-3 4.69 0.125 0.732¢-5 5.88
213 0.341 0.321e-3 3.36 0.123 0.754e-5 4.02
Q16 0.344 0.325e-3 2.98 0.119 0.716e-5 3.50
217 0.346 0.328e-3 2.86 0.120 0.674e-5 3.34
219 0.347 0.332¢-3 2.83 n.119 0.629¢-5 3.29

*Free-boundary spline problem results using the linear station-

ary iterative process API-DC and the API-CG algorithm. N is
the number of unknowns. per(n) =|| r" ||z / || r* ||z. T(n) is
the time for n iterations in milliseconds.



8. Conclusion

The concept of an approximate pseudo-inverse provides a usefu! tcol for the implementation

of the exact Moore-Penrose pseudo-inverse At of a singular linear operator A and, in
some circumstances, allows an O(N) implementation of A*. We have described a simple
construction technique for an API that is useful for consistent singular problems and have
applied such APIs to the large sparse underdetermined system arising from free-boundary
spline interpolation. The rate of convergence was independent of the order of the problem in
this example, which was demonstrated for orders up through a half million, showing that we
indeed had an O(N) implementation of A*. We also demonstrated the effectiveness of the
fast approximate pseudo-inverse FAPIN, a V-cycle multigrid algorithm using an API as a
smoother, on Poisson’s problem on a two-torus of size a quarter million. These APIs proved
to be almost perfectly parallelizable, which we demonetrated using the iPSC hypercube
at the Chrisiian Michelsen Institute in Bergen. They also proved to be very effective
preconditioners for the conjugate gradient algorithm, and allowed the API-CG algorithm
to be applied to a nonsymmetric problem, such as the free-boundary spline interpolation
problem.
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